
Biomimetic Virtual Constraint Control
of a Transfemoral Powered Prosthetic Leg

Robert D. Gregg and Jonathon W. Sensinger

Abstract— This paper presents a novel control strategy for
a powered knee-ankle prosthesis based on biomimetic virtual
constraints. We begin by deriving kinematic constraints for the
“effective shape” of the human leg during locomotion. This
shape characterizes ankle and knee motion as a function of the
Center of Pressure (COP)—the point on the foot sole where
the ground reaction force is imparted. Since the COP moves
monotonically from heel to toe during steady walking, we adopt
the COP as the phase variable of an autonomous feedback
controller. We show that our kinematic constraints can be
enforced virtually by an output linearizing controller that uses
only feedback available to sensors onboard a prosthetic leg. This
controller produces walking gaits with human-like knee flexion
in simulations of a 6-link biped with feet. Hence, both knee
and ankle control can be coordinated by one simple control
objective: maintaining a constant-curvature effective shape.

I. INTRODUCTION

High-performance prostheses could significantly improve
the quality of life for lower-limb amputees, whose
ambulation is typically slower, less stable, and less efficient
than able-bodied persons [1], [2]. The recent advent of
mechanically powered legs (e.g., [3]–[5]) presents new
opportunities in prosthetic control systems, but many control
challenges currently limit their clinical viability.

The prevailing methodology independently controls each
joint and each phase of the gait cycle, requiring clinicians to
spend a significant amount of time tuning each controller to
the individual. For example, the Vanderbilt leg [3] changes
proportional-derivative (PD) gains for the ankle and knee
according to five discrete phases. The iWalk ankle [4]
also uses a finite state machine but trades the simplicity
of PD controllers for the biomimetic behavior of muscle
reflex models. Reliable tuning of these increasingly complex
control strategies is of paramount importance to lower-limb
amputees, who experience frequent falls [1].

These challenges could potentially be addressed by
parameterizing a nonlinear control model with a mechanical
representation of the gait cycle phase, which could be
continuously sensed by a prosthesis to match the body’s
progression through the cycle. Feedback controllers for
autonomous walking robots have been developed that
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“virtually” enforce kinematic constraints [6]–[8], which
define desired joint patterns as functions of a mechanical
phase variable (e.g., the stance leg angle). This nonlinear
control framework, known as output linearization, has proven
successful in experimental bipedal robots such as RABBIT
[6], ERNIE [6], and MABEL [7] but has never been applied
to the field of prosthetics. This approach could be dovetailed
with biologically-inspired constraints to make prosthetic legs
more robust and easily tuned than controllers used to date.

For this purpose we examine studies suggesting that
human locomotor patterns depend on the progression of
the Center of Pressure (COP)—the point on the foot sole
where the resultant ground reaction force is imparted.
Hansen et al. showed that during human walking, geometric
relationships exist between stance leg joints and the COP
[9]–[12]. When the COP trajectory is examined relative to
the shank, it is found that the ankle and foot together conform
to a circular rocker shape (coined “effective shape”) that
is invariant over walking speeds, heel heights, and body
weights. The fact that the COP moves monotonically from
heel to toe during steady gait [13] suggests that the COP can
serve as the phase variable of a virtual constraint. However,
without the availability of state feedback from the coupled
human body, it is unclear how a prosthetic control system can
linearize its output dynamics to enforce a virtual constraint.

We recently derived such a controller for a prosthetic ankle
based on the ankle-foot (AF) effective shape [14], but this
strategy did not include the knee joint. Fortunately the knee-
ankle-foot (KAF) effective shape—the COP trajectory in a
thigh-based reference frame—has approximately the same
curvature as the AF shape during walking [10], suggesting
that the KAF shape can serve as a second virtual constraint.

This paper shows that knee and ankle control during
walking can be coordinated by one simple objective:
maintaining a constant curvature in the effective shapes. This
work is clinically significant to the ease of use and reliability
of powered prosthetic legs. The technical contributions of
the paper are two-fold: (i) we show that the effective
shapes between the COP, ankle, and knee correspond to
two kinematic constraints, which (ii) can be simultaneously
enforced as virtual constraints by an output linearizing
controller using feedback available to sensors onboard a
prosthetic leg. This includes a generalization of the output
linearization framework from [14]—which is subject to
external forces and holonomic constraints—to the case of
vector outputs. The resulting control strategy drives ankle
and knee patterns as a function of the COP, a novel choice
of phase variable that unifies the entire single-support cycle.



Fig. 1. Biped model showing the prosthetic stance leg in solid gray and the
body in dashed black. Positive/negative movement are respectively termed
dorsiflexion/plantarflexion for the ankle and extension/flexion for the knee.

We demonstrate this approach by simulating a biped model
and find stable gaits with human-like knee flexion.

II. LEG MODEL

In this paper we use a planar 6-link biped model to design
the prosthesis controller and to simulate walking. The biped
of Fig. 1 has a hip joint, knees, and ankles with constant-
curvature rocker feet to approximate the deformation of
human feet during walking [15]. We consider the stance leg
(shown in solid gray) to be a prosthesis, which connects
to the body (shown in dashed black) at the hip. We will
separately model the prosthetic leg for our control derivation
in Section III and return to the full biped model for the
purpose of simulation in Section IV. We model the prosthetic
leg as a kinematic chain with respect to a global reference
frame defined at the COP during stance. We then derive a
holonomic constraint that forces the COP to move along
the rocker foot in the continuous dynamics. Note that this
constraint is different than the effective shape, which depends
on both the foot curvature and joint motion (Section III). We
conclude the current section by discussing the swing period.

Dynamics. The configuration of the leg is given by q =
(x, y, φ, θa, θk)T , where x, y are the Cartesian coordinates of
the heel, φ is the foot orientation with respect to vertical, θa

is the ankle angle, and θk is the knee angle. The state of the
dynamical system is given by vector z = (qT , q̇T )T , where
q̇ contains the joint velocities. The state trajectory evolves
according to a differential equation of the form

M(q)q̈ + C(q, q̇)q̇ +N(q) +AT (q)λ = τ (1)

where M is the inertia/mass matrix, C is the matrix of
Coriolis/centrifugal terms, N is the vector of gravitational
forces, A is the constraint vector for the rocker foot
(modeling foot compliance), and λ is the Lagrange multiplier
consisting of physical forces from the foot constraint. The
external forces τ = Bu+JT (q)F are comprised of actuator
torques and interaction forces with the body, respectively.

Ankle and knee actuation is provided by torque input
u and mapped into the leg’s coordinate system by B =
(02×3, I2×2)T . The interaction force F ∈ R3 at the socket—
the connection between the prosthesis and body at the hip
in Fig. 1—is composed of linear forces in the plane and
the moment about the normal axis. Force vector F , which
acts at the end-point of the leg’s kinematic chain, is mapped
to torques and forces at the leg joints by the body Jacobian
matrix J(q) [16]. The interaction force can be measured by a
load cell at the socket. We now show how to model the rocker
foot in the context of equation (1) for the stance period.

Stance Period. During stance the COP is defined at the
origin of the global reference frame. We model the rocker
foot by constraining the heel point (x, y) to an arc that has
radius Rf and intersects the COP (Fig. 1). The center of
rotation Pf is defined in a moving reference frame such that
the vector between Pf and the COP is always normal to the
ground with radius ||Pf − COP || = Rf . This constraint is
given in model coordinates by the equation aroll

1 (q) = 0 for

aroll
1 (q) := (x−Rf sin(φ))2 + (y +Rf cos(φ))2 −R2

f . (2)

We also constrain the foot orientation φ so the heel is
perpendicular to the rocker, where the equation for the chord
length between the heel and COP yields aroll

2 (q) = 0 for

aroll
2 (q) := φ− γ − 2 arcsin(

√
x2 + y2

2Rf
) (3)

on a ground slope of angle γ.
The foot does not go behind the heel, so depending

on orientation φ the rocker may not be in contact with
the ground at heel strike (x = y = 0). In this case the
biped rotates about the heel using constraints aheel

1 (q) := x,
aheel

2 (q) := y, which fix the heel position to the ground (i.e.,
acting as a point foot). The model switches to the rocker
constraints (2)-(3) when the sole intersects the ground, i.e.,
when aroll

2 (q) = 0. We will discuss this transition in greater
detail when modeling the full biped in Section IV.

Given either of these contact conditions, we follow the
method in [14], [16] to compute the constraint matrix A =
∇qa and Lagrange multiplier λ = λ̂+ λ̃u+ λ̄F , where

λ̂ = W (Ȧq̇ −AM−1(Cq̇ +N)), (4)

λ̃ = WAM−1B, λ̄ = WAM−1JT

for W = (AM−1AT )−1. We denote the heel contact matrix
as Aheel and the rolling contact matrix as Aroll. Recall that
the rocking constraints pertain only to the foot, whereas the
effective shapes in Section III will characterize the pendular
trajectory of the entire stance leg.

Swing Period. During the swing period, (x, y) is the heel
point of the swing foot with respect to the global reference
frame. The heel moves based on both the leg’s own dynamics
and interaction forces acting at the top of the leg. The COP
is ill-defined for the swing foot, so we do not invoke the
contact constraints, i.e., A = 0, λ = 0 in dynamics (1).

Since the prosthetic leg does not bear the user’s body
weight during the swing period, its joints can be accurately



Fig. 2. Diagrams of the ankle-foot (left) and knee-ankle-foot (right)
effective shapes. The COP moves along each shape (dashed curve) in the
shank-based or thigh-based coordinate frame (solid axes).

controlled using traditional methods such as PD control. The
swing knee and ankle primarily facilitate ground clearance
during human locomotion, although these joints also have a
role in step placement. In this paper we are interested in the
challenging problem of stance-period control, so we simply
implement PD control to drive the swing ankle to zero and
the swing knee to a flexion angle of 0.4 rad:

usw(θa, θk, θ̇a, θ̇k) :=

(
−kpaθa − kdaθ̇a

−kpk(θk − 0.3)− kdkθ̇k

)
. (5)

We now use the leg model to derive the stance-period
controller based on the human effective shape.

III. EFFECTIVE SHAPE CONTROL

We wish to design a prosthetic control system that mimics
the effective shape of the biological leg during various
locomotor tasks [12]. This shape characterizes how the ankle
and knee move as the COP travels from heel to toe. We now
derive the kinematic constraints for the AF and KAF shapes,
which we will later enforce with a feedback controller.

Kinematic Constraints. The AF effective shape is the COP
trajectory mapped into a shank-based reference frame (axes
x̂s, ŷs in Fig. 2, left). Able-bodied humans have effective
shapes specific to activities such as walking or stationary
swaying [12], and each shape can be characterized by the
curvature of the COP trajectory with respect to a point Ps =
(Xs, Ys)

T attached to the shank reference frame (Fig. 2). This
can be expressed as the coordinate-free distance relationship

||Ps − COP || = Rs(COP ), (6)

where the radius of curvature Rs is a function of the COP.
In the COP reference frame the effective center of rotation

is given by the function

PCOPs (q) = (x, y)T + `f(− sin(φ), cos(φ))T + S(ρ)Ps (7)

where S is the standard rotation matrix parameterized by
angle ρ = φ + θa. Equation (6) is then given in our model
coordinates by the kinematic constraint hs(q) = 0 for

hs(q) := norm(PCOPs (q))2 −R2
s (x, y). (8)

The KAF effective shape is the COP trajectory
transformed into a thigh-based coordinate frame (axes x̂t,
ŷt in Fig. 2, right). This coordinate frame shares an origin
with that of the AF effective shape, but the yt-axis is attached
to the thigh at the hip joint. Defining a point Pt = (Xt, Yt)

T

in this reference frame, the COP moves about Pt with radius
of curvature Rt(COP ). Therefore, the KAF effective shape
is characterized by the distance relationship (6) with center
of rotation Pt and curvature function Rt. The KAF center of
rotation is given in the COP reference frame by the function
PCOPt (q), which has the form (7) with rotation angle

ρ = φ+ arctan(
`s sin(θa) + `t sin(θa + θk)

`s cos(θa) + `t cos(θa + θk)
).

Finally, the kinematic constraint for the KAF effective shape
is given in our model coordinates by ht(q) = 0, where ht is
given by (8) in terms of PCOPt and Rt.

Both the AF and KAF constraints depend on the COP,
which moves monotonically from heel to toe during steady
walking. Therefore, a controller that virtually enforces these
constraints will synchronize knee and ankle movement
through mutual dependence on the COP as a phase variable.

Virtual Constraint Controller. We cannot expect to have
either a model of the human or sensors at intact joints in a
clinically viable system. The controller should then only rely
on the prosthesis model and feedback available to onboard
sensors, i.e., state z = (qT , q̇T )T and interaction force F .

The coupled dynamics (1) of the weight-bearing prosthesis
can be given in a modified control-affine form (cf. [17]):

ż = f(z) + g(z)u+ j(z)F, (9)

where the vector fields are defined as

f(z) =

(
q̇

−M(q)−1
(
C(q, q̇)q̇ +N(q) +AT (q)λ

) ) , (10)

g(z) =

(
05×5

M−1(q)B

)
, j(z) =

(
05×5

M−1(q)JT (q)

)
.

Letting vector output ξ := h(z) = (hs(z), ht(z))
T , our

goal is to define a feedback control law for u that drives ξ
to zero in system (9). We first examine the output dynamics
of the above system:

ξ̇ = (∇zh)ż = Lfh+ (Lgh)u+ (Ljh)F, (11)

where the Lie derivative Lfh := (∇zh)f characterizes the
change of h along flows of vector field f [17], and it is easily
shown that Lgh = 0 and Ljh = 0 for all z. Noting that no
acceleration or control terms appear in Lfh, output ξ has
relative degree greater than one (cf. [17]) and we must take
another time-derivative to expose the control input u:

ξ̈ = L2
fh+ (LgLfh)u+ (LjLfh)F. (12)

Because the Lagrange multiplier defined in (4) explicitly
depends on the external joint torques, so does the second
Lie derivative L2

fh = L̂2
fh+ (L̃2

fh)u+ (L2
fh)F , where

L̂2
fh = (∇qLfh)q̇ − (∇q̇Lfh)M−1(Cq̇ +N +AT λ̂),

L̃2
fh = −(∇q̇Lfh)M−1AT λ̃, L2

fh = −(∇q̇Lfh)M−1AT λ̄.



Grouping the control input terms from (12), we can solve
for the control law that inverts the output dynamics:

ust(z) := D−1(−L̂2
fh− (L2

fh+ LjLfh)F + v), (13)

where the decoupling matrix D = LgLfh+L̃2
fh depends on

q and is non-singular for feasible walking configurations. We
then choose auxiliary input v to render the output dynamics
linear and exponentially stable:

ξ̈ = v := −
(
Kps 0

0 Kpt

)
ξ −

(
Kds 0

0 Kdt

)
ξ̇ (14)

with positive PD gains. Given sensor measurements of z and
F and actuation of u, (14) implies ξ(t) → 0 exponentially
fast as t→∞ for ξ(0) 6= 0. The PD terms will correct errors
resulting from perturbations such as discontinuous impact
events, which we will see when modeling the full biped next.

IV. SIMULATION RESULTS

Now that we have designed a controller for the prosthetic
leg, we wish to study it during simulated walking with the
full biped model of Fig. 1. This requires us to consider the
coupled dynamics of the body and the controlled prosthesis.
We can approximate the behavior of the human-in-the-
loop by exploiting the existence of passive walking gaits.
Passive gaits arise on declined surfaces when the potential
energy converted into kinetic energy during each step period
replenishes the energy dissipated at impact events [18],
[19]. This behavior reflects certain characteristics of human
walking, such as ballistic swing motion [20] and energetic
efficiency down slopes [21]. We have already modeled the
swing period of the prosthetic leg to behave passively, and
we will do the same with the hip joint of the body.

Biped Model. For simplicity we assume each leg employs
controller (13) during stance and controller (5) during swing
(as in the case of a bilateral amputee). The legs do not
communicate, so each prosthesis interacts with the hip and
opposing leg in (1) as it would with the human body.

The configuration vector of the full biped is denoted by
q̆ = (qT , θh, θsa, θsk)T , where θh is the body’s hip angle,
θsa is the swing ankle angle, and θsk is the swing knee
angle. After heel strike the biped’s dynamics are governed
by a differential equation of the form (1), using heel contact
constraint matrix Ăheel = ∇q̆aheel until the foot sole
intersects the ground when aroll

2 (q̆) = 0. The subsequent foot
slap is modeled as an instantaneous impact, where the joint
velocities change to ˙̆q

+
= ˙̆q

−
− X(ĂrollX)−1Ăroll

˙̆q
−

with
X = M̆−1ĂTroll, satisfying the rolling contact constraints
provided by Ăroll = ∇q̆aroll (cf. [19], superscripts +/−
respectively denote post/pre-impact).

The dynamics are then simulated under rolling contact
until the swing foot contacts the ground, which initiates the
next step. We define a function Hγ(q̆) to give the height of
the heel of the swing foot above ground with slope angle γ.
The subsequent double-support transition is modeled as an
instantaneous impact event with a perfectly plastic (inelastic)
collision as in [6]. The state trajectory is subjected to the

TABLE I
MODEL AND CONTROLLER PARAMETERS

Parameter Variable Value
Hip mass mh 31.73 [kg]
Thigh mass mt 9.45 [kg]
Thigh moment of inertia It 0.1995 [kg·m2]
Thigh/shank length `t, `s 0.428 [m]
Shank mass ms 4.05 [kg]
Shank moment of inertia Is 0.0369 [kg·m2]
Heel height `f 0.07 [m]
Foot mass mf 1 [kg]
Foot radius Rf 0.257 [m]
Slope angle γ 0.03 [rad]
KAF/AF effective radius Rt, Rs 0.351 [m]
KAF/AF proportional gain Kpt, Kps 121.46 [N/m]
KAF/AF derivative gain Kdt, Kds 15.43 [N·s/m]
KAF center of rotation Xt 0 [m]
AF center of rotation Xs 0.015 [m]
Swing hip proportional gain kph 6.073 [Nm/rad]
Swing hip derivative gain kdh 2.464 [Nm·s/rad]
Swing knee proportional gain kpk 12.146 [Nm/rad]
Swing knee derivative gain kdk 2.091 [Nm·s/rad]
Swing ankle proportional gain kpa 121.46 [Nm/rad]
Swing ankle derivative gain kda 15.43 [Nm·s/rad]

discontinuous impact map ∆, which also changes the values
of q̆ to re-label the stance/swing legs. The dynamics for one
step period are therefore given sequentially by

M̆(q̆)¨̆q + C̆(q̆, ˙̆q) ˙̆q + N̆(q̆) + ĂTheel(q̆)λ̆ = τ̆ , aroll
2 (q̆) 6= 0

˙̆q
+

= ˙̆q
−
− X(ĂrollX)−1Ăroll

˙̆q
−
, aroll

2 (q̆) = 0

M̆(q̆)¨̆q + C̆(q̆, ˙̆q) ˙̆q + N̆(q̆) + ĂTroll(q̆)λ̆ = τ̆ , Hγ(q̆) 6= 0

(q̆+, ˙̆q
+

) = ∆(q̆−, ˙̆q
−

), Hγ(q̆) = 0

which then returns to the beginning of the sequence for the
next step. Note that the accented terms for the full model are
defined as in Section II, and all control torques are given by

τ̆ = [BT , 02×3]Tust+[01×5, 1, 01×2]Tuh+[02×6, I2×2]Tusw,

where we achieve more consistent step placement by
augmenting the body’s passive dynamics with the hip input
uh(θh, θ̇h) := −kph(θh + 0.4)− kdhθ̇h.

This biped model is known as a hybrid dynamical system.
Letting z̆ = (q̆T , ˙̆q

T
)T be the state vector for the full biped,

walking gaits are cyclic and correspond to solution curves
z̆(t) of the hybrid system such that z̆(t) = z̆(t + T ) for
all t ≥ 0 and some minimal T > 0. These solutions
define isolated orbits in state space known as hybrid limit
cycles, which correspond to equilibria of the Poincaré map
P : G → G, where G = {z̆ | Hγ(q̆) = 0} is the switching
surface indicating heel strike. This return map represents a
hybrid system as a discrete system between impact events,
sending state z̆j ∈ G ahead one step to z̆j+1 = P (z̆j). A
periodic solution z̆(t) then has a fixed point z̆∗ = P (z̆∗). We
verify stability about z̆∗ by approximating the linearized map
∇z̆P (z̆∗) through a perturbation analysis [18]. The linearized
discrete system is exponentially stable if the eigenvalues of
∇z̆P (z̆∗) are within the unit circle, by which we can infer
local stability of the hybrid limit cycle.

Simulations. The model parameters of Table I consist of
average values from adult males reported in [22], with the
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Fig. 3. Angular phase portrait (left) and angular time-trajectories (right) during steady-state walking.
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Fig. 4. COP over time (left) and stance ankle/knee over COP (right) during steady-state walking. Note that the foot initially contacts the ground 5 mm
in front of the heel (positive x-direction) to avoid a singularity in the contact constraints.
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Fig. 5. Control torques (left) and outputs (right) over time during steady-state walking.
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Circles indicate contralateral heel strike. The AF and KAF shapes on the left are oriented differently due to their different centers of rotation.



trunk masses grouped at the hip. The physical foot radius
is set to Rf = 0.3L for leg length L = `s + `t, which is
characteristic of human foot compliance [15].

During walking the effective radius of curvature is constant
for both the KAF and AF shapes (circular arcs in Fig.
2). Their radii were found to be approximately the same,
Rt = Rs = 0.41L, in the studies of [9]. Humans have a
plantarflexed KAF shape on downhill slopes [9], so Table I
defines Xs slightly behind the shank and Xt at the hip for
walking in the negative x-direction. The other component of
Ps is given by Ys =

√
R2

s −X2
s − `f because condition (6)

must be satisfied at the zero configuration, when the COP
is co-linear with the shank. The two leg-based reference
frames in Fig. 2 share an origin, so we also have Yt =√
R2

t −X2
t − `f . We choose Kps = Kpt = 2 N/m/kg and

Kds = Kdt = 2ζ
√
Kps to achieve damping ratio ζ = 0.7 in

the linearized output dynamics (14).
The dynamics, interaction forces, and control law (13) are

simultaneously computed from both the full biped model and
the prosthesis model in MATLAB. Walking gaits are found for
our choice of parameters using the methods in [18]. Once the
biped has converged to a steady-state gait, we verify that the
associated fixed point is locally exponentially stable, using
the procedure in [18]. A supplemental video of the animated
walking gait is available at http://vimeo.com/49347309.

The hybrid limit cycle is shown in the phase portrait and
trajectories of Fig. 3 and 4. The biped has heel contact for
270 ms followed by rolling contact for 551 ms (Fig. 4).
This contact transition causes a discontinuity in the torque
trajectories of Fig. 5 (left), but controller (13) drives the
outputs toward zero during both contact conditions. Every
ground-strike event re-introduces a small amount of output
error, but the outputs converge to zero within the step period
(Fig. 5, right), implying both effective shapes are enforced.

The stance knee trajectory shown in Fig. 3 has human-
like range-of-motion with up to 16.2 degrees of flexion
after ipsilateral heel strike (compared to about 18 degrees
in humans [13]). The KAF center of rotation was chosen
less than the AF center to induce this knee flexion [9],
which is especially important when walking downhill. We
also see ankle plantarflexion at the end of the step period.
Viewing these trajectories as a function of the COP—our
phase variable—in Fig. 4 (right), we see nearly constant
slopes during the majority of rolling contact.

We demonstrate the effect of the centers of rotation by
setting Xs equal to Xt = 0. The resulting trajectories of the
stance ankle and knee are superimposed against the original
trajectories in Fig. 6 (left). Moving the AF center closer to the
shank has two consequences: the ankle is more plantarflexed
and the knee is less flexed than before (in fact, the knee angle
approaches zero). Desirable knee flexion can be retained if
we also decrease Xt, as the difference Xs −Xt appears to
determine the amount of knee motion. This relationship is
to be expected since the KAF shape depends on the ankle,
whereas the AF shape does not depend on the knee. Note that
the change in Xs has little influence on the COP trajectory.

Although the choice Rt = Rs approximates human data, it

is possible to choose non-equal values. Fig. 6 (right) shows
the stance ankle/knee trajectories after changing the KAF
radius to Rt = 0.3L. This causes little change in the ankle,
and the knee trajectory only differs near the end of the step
period with less flexion. The biped remains in heel contact
longer and the COP range-of-motion decreases by almost
2 cm, which we see in the effective shapes of Fig. 7. We
previously reported in [14] that walking speed, step length,
step period, and COP motion increase with a larger AF
radius, and this trend also appears true with the KAF shape.

V. DISCUSSION

The proposed control strategy can potentially improve
the clinical viability of powered prostheses. This knee-ankle
control strategy requires tuning of only five independent
control parameters (Rs = Rt, Kps = Kpt, Kds = Kdt,
Xs, Xt) for the entire single-support period, whereas other
control approaches have many more parameters during stance
(e.g., 18 for event-based impedance control [3], 14 for the
muscle model of one joint [4], or an entire look-up table for
tracking human data [5]). We chose the same PD gains for
both shapes so their respective outputs would have the same
rate of convergence by virtue of the linearization (Fig. 5).
The effective radius Rs = Rt is a fraction of the user’s
leg length and the rotational centers Xs, Xt respectively
determine the amount of flexion in the ankle/knee joints,
offering a simple tuning procedure. Moreover, the output
linearization approach can accurately enforce constraints
with much smaller gains than standard PD control [7], which
is desirable for stability in the presence of feedback time
delay and for safety when interacting with humans.

We also showed that output linearization can be achieved
on a prosthetic leg using measurements of interaction forces
in place of state feedback from the human body. Load cells
are common in modern prosthetic legs (e.g., [3], [4]) and
can also be used to measure the COP [23]. Our controller
depends on the global foot orientation φ, which can be
measured with a rate gyro and filtered as done in [5]. The
controller does not require the slope angle γ because matrix
Aroll consists of partial derivatives of (3), which eliminate
any dependence on γ. The matrix Aroll does, however,
depend on the radius of foot compliance Rf , which has
already been characterized for many prosthetic feet in [11].

The walking model used to simulate our controller has
limitations, including its COP motion, instantaneous double-
support period, and downhill slope. Our first gait has no
COP motion until 270 ms into the stance period, whereas
humans have strictly monotonic COP trajectories during
steady walking [13]. The COP does not represent the gait
cycle phase of our model during heel contact (note the
hysteresis in Fig. 4, right), so a more human-like COP
trajectory would make our controller an even better match for
human behavior (as seen in the preliminary experiments of
[23]). Moreover, the controller would not need to switch its
contact constraint, as real feet comply continuously during
stance (i.e., the foot never has true point contact).



A non-trivial double-support period could be modeled
using a compliant ground contact model, which has been
done in the context of output linearization [24]. However, the
constant-curvature property of the effective shape does not
hold after contralateral heel strike [9]. The main challenge is
then to extend the kinematic model of the effective shape into
the double-support period (and possibly the swing period),
e.g., by using the theoretical COP of the support polygon,
which can be located between the two feet.

By relying on passive dynamics to generate the body’s
joint patterns, we were limited to testing our controller with
a downhill walking task. We can mimic human behavior on
different slopes by rotating the effective centers of rotation
Ps, Pt by the slope change [9]. Stationary fore-aft swaying
also has a constant effective radius—about six times that of
a walking task [12]. The output functions hs, ht allow the
radii of curvature Rs, Rt to be functions of the COP, which
may be the case for tasks like stair climbing.

VI. CONCLUSION

We showed that the effective shapes between the COP,
ankle, and knee correspond to two kinematic constraints,
which can be enforced as virtual constraints by an output
linearizing control law using only feedback available to
sensors onboard a prosthetic leg. Therefore knee and ankle
control during walking can be coordinated by one simple
objective: maintaining constant curvature in the effective
shapes. Due to shape invariance over walking speeds, body
weights, and heel heights [9], this choice of constraints
allows the prosthesis to naturally adapt to the user. The
constraints can also be systematically tuned to produce the
effective shapes corresponding to different activities, e.g.,
standing and stair climbing, by changing the center of
rotation or curvature function for each shape.

Preliminary experiments with our controller are presented
in [23]. Future work could integrate our controller with a
neural interface (e.g., using electromyography from residual
muscles [25]) to allow the user to subconsciously adapt the
effective shapes when anticipating a task change.

Our control approach can possibly be extended into
three dimensions by investigating the effective shape of
mediolateral motion during walking. Our formulation of
output linearization for prosthetics can also enforce other
kinematic constraints unrelated to effective shape. This
framework motivates investigation of a general control theory
for wearable robots, including powered orthoses [26], [27].
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